skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee-Robbins, Elsie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Due to their pedagogical advantages, large final projects in information visualization courses have become standard practice. Students take on a client–real or simulated–a dataset, and a vague set of goals to create a complete visualization or visual analytics product. Unfortunately, many projects suffer from ambiguous goals, over or under-constrained client expectations, and data constraints that have students spending their time on non-visualization problems (e.g., data cleaning). These are important skills, but are often secondary course objectives, and unforeseen problems can majorly hinder students. We created an alternative for our information visualization course: Roboviz, a real-time game for students to play by building a visualization-focused interface. By designing the game mechanics around four different data types, the project allows students to create a wide array of interactive visualizations. Student teams play against their classmates with the objective to collect the most (good) robots. The flexibility of the strategies encourages variability, a range of approaches, and solving wicked design constraints. We describe the construction of this game and report on student projects over two years. We further show how the game mechanics can be extended or adapted to other game-based projects. 
    more » « less
  2. When designing communicative visualizations, we often focus on goals that seek to convey patterns, relations, or comparisons (cognitive learning objectives). We pay less attention to affective intents–those that seek to influence or leverage the audience's opinions, attitudes, or values in some way. Affective objectives may range in outcomes from making the viewer care about the subject, strengthening a stance on an opinion, or leading them to take further action. Because such goals are often considered a violation of perceived ‘neutrality’ or are ‘political,’ designers may resist or be unable to describe these intents, let alone formalize them as learning objectives. While there are notable exceptions–such as advocacy visualizations or persuasive cartography–we find that visualization designers rarely acknowledge or formalize affective objectives. Through interviews with visualization designers, we expand on prior work on using learning objectives as a framework for describing and assessing communicative intent. Specifically, we extend and revise the framework to include a set of affective learning objectives. This structured taxonomy can help designers identify and declare their goals and compare and assess designs in a more principled way. Additionally, the taxonomy can enable external critique and analysis of visualizations. We illustrate the use of the taxonomy with a critical analysis of an affective visualization. 
    more » « less